We are very excited to announce that Zaggy AI has been accepted to the Microsoft for Startups Founders Hub! We look forward to working with the team at Founders Hub to explore the many services and solutions available in the Microsoft Azure ecosystem, as well as back office and productivity tools.
Similar Posts
Generating Smoke and Mirrors
The term “generative AI” (GenAI) is being abused to describe non-generative AI in the current market hype surrounding the technology, even though the lines are admittedly a bit blurred in some cases.
Unsupervised and Self-Supervised Learning: The Future of AI
In the rapidly advancing field of artificial intelligence (AI), unsupervised and self-supervised learning is emerging as a transformative paradigm that promises to reshape the landscape.
Edge Computing: The Future of Processing and Why It’s Important
Edge computing is transforming the way data is being handled, processed, and delivered from millions of devices around the world. As the next wave in the evolution of internet architecture, edge computing is poised to redefine connectivity and provide new opportunities for businesses and consumers alike. Here’s an in-depth look at what edge computing is and why it is crucial.
Opinion: On Abstract Headers and Generative AI
I’m sure by now you’ve noticed the oddly abstract post headers we’ve been using in lieu of clip art, stock art, or custom artwork. In the spirit of being an AI-focused venture ourselves, we decided it would be interesting to dabble in generative AI.
Comparing and Contrasting Supervised, Unsupervised, and Self-Supervised Deep Learning
Deep learning, a subset of machine learning, has taken the technological world by storm, underpinning the advancements in various applications from autonomous vehicles to drug discovery. Three dominant paradigms within deep learning are supervised, unsupervised, and self-supervised learning. In this article, we will elucidate these methods, noting their similarities and distinctions.
A Look at Hybrid AI Approaches
Hybrid AI aims to combine the best of both worlds to create more robust, reliable, and effective systems by leveraging a blend of both rule-based and learning-based approaches.